Two Sufficient Conditions for Hamilton and Dominating Cycles

نویسنده

  • Zhora G. Nikoghosyan
چکیده

We prove that ifG is a 2-connect graph of size q the number of edges andminimumdegree δwith δ ≥ 2q/3 /12−1/2, where 11 when δ 2 and 31 when δ ≥ 3, then each longest cycle in G is a dominating cycle. The exact analog of this theorem for Hamilton cycles follows easily from two known results according to Dirac and Nash-Williams: each graph with δ ≥ q 5/4 − 1/2 is hamiltonian. Both results are sharp in all respects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two sufficient conditions for dominating cycles

A cycle C of a graph G is dominating if each component of GnC is edgeless. In the paper, we will give two sufficient conditions for each longest cycle of a 3-connected graph to be a dominating cycle. 2005 Wiley Periodicals, Inc. J Graph Theory 49: 135–150, 2005

متن کامل

Decomposition of Circulants into Antidirected Hamilton Cycles

Let G = Gn(a1, a2, ..., ak) denote a directed circulant graph of order n with k pairwise distinct jumps [1]. Antidirected Hamilton cycle in G is a cycle of n arcs that does not contain induced directed path P2. Let C 1 G, C 2 G, ..., C k G be pairwise arc-disjoint antidirected Hamilton cycles in G, each composed of exactly two distinct jumps. We give the necessary and sufficient conditions for ...

متن کامل

0n removable cycles in graphs and digraphs

In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...

متن کامل

Characterization of signed paths and cycles admitting minus dominating function

If G = (V, E, σ) is a finite signed graph, a function f : V → {−1, 0, 1} is a minusdominating function (MDF) of G if f(u) +summation over all vertices v∈N(u) of σ(uv)f(v) ≥ 1 for all u ∈ V . In this paper we characterize signed paths and cycles admitting an MDF.

متن کامل

Graph Invariants and Large Cycles: A Survey

Graph invariants provide a powerful analytical tool for investigation of abstract substructures of graphs. This paper is devoted to large cycle substructures, namely, Hamilton, longest and dominating cycles and some generalized cycles including Hamilton and dominating cycles as special cases. In this paper, we have collected 36 pure algebraic relations between basic initial graph invariants ens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012